<u>Motion</u>

Opportu	nities for Breadth and Challenge: Using a velocity time graph to estimate distance travelled		
Links to This unit This unit	Sequencing for Learning: Inks to previous work on done in KS3 P1 Motion and Force prepares pupils for work in Y10 CP7 Energy – Forces doing work		
Section	What we are learning (key knowledge)	Key words	Assessment
1	SP1a Vectors and scalars What are vector and scalar quantities? Wat are some examples of scalar quantities and their corresponding vector quantities? What is the connection between the speed, velocity and acceleration of an object?	Force Upthrust Magnitude Vector quantity Scalar quantity	Prior knowledge
2	SP1b Distance time graphs How do you use the equation relating to average speed, distance and time? In metres per second, what are the typical speeds that someone might move at during the course of the day? How do you represent journeys on a distance/time graph?	Mass Distance Speed Energy Displacement	Retrieval Qs of keywords
3	SP1c Acceleration How do you calculate acceleration from the change in velocity and a time? How are acceleration, initial velocity, final velocity and distance related? What is the acceleration of free fall?	Momentum Average Speed Instantaneous Speed Distance/Time Graph Gradient	Homework: independent research for poster
4	SP1d Velocity/time graphs How do we compare acceleration on a velocity/time graph? How can you calculate acceleration from a velocity/time graph? How can you use a velocity/time graph to work out the total distance travelled?	Velocity Acceleration Deceleration	MUM: poster

		Velocity/Time Graph	
5	Revision		Class assessment
			sheet
6	End of Unit Test		EUT
7	Test Feedback		Test feedback sheet

Forces and Motion

Opportur	nities for Breadth and Challenge: Using Newtons laws of motion effectively.		
Links to S	equencing for Learning:		
This unit	links to previous work on Motion and Forces done in KS3 P1 Year 7		
This unit	prepares pupils for work in Y10 CP7 Energy forces and doing work.		
Section	What we are learning (key knowledge)	Key words	Assessment
1	Resultant forces	Speed, velocity, vector	Prior knowledge
	 What is the difference between the speed of an object and its velocity? 	object and its velocity? quantity, scalar quantity,	
	 How do we represent all the forces acting on an object? 	acceleration,	
	How do we calculate resultant forces?		
2	Newtons first law of motion	Centripetal force	Retrieval Qs of
	 What happens to the motion of an object when the forces on it are balanced? 		keywords
	 What can happen to the motion of an object when there is a resultant force on it? 		
	What is centripetal force?		
3	Mass and weight	Mass, weight, force meter,	Homework:
	 What is the difference between mass and weight? 	gravitational field strength.	independent
	 What are the factors that determine the weight of an object? 		research for poster
	How do you calculate weight?		
4	Newtons second law	Inertial mass	MUM: poster
	 What are the factors that affect the acceleration of an object? 		
	 How do you calculate the different factors that affect acceleration? 		
	What is inertial mass and how is it defined?		
5	Core practical Investigating acceleration		
	• Investigate the relationship between force, mass and acceleration by varying the masses added to		
	trolleys.		
6	Newtons third law of motion	Action reaction forces,	
	What does Newton's Third Law tell us?	equilibrium	
	 How does Newton's Third Law apply to stationary object? 		
	 How do objects affect each other when they collide? 		
7	Momentum	Momentum, conservation	
	How is momentum calculated?	of momentum	
	How is momentum related to force and acceleration?		
	What happens to momentum in collisions?		

8	Stopping distances	Thinking distance, breaking	
	How are human reaction times measured?	distance, stopping distance,	
	What are typical human reaction times?	reaction time, stimulus,	
	 What are the factors that affect the stopping distance of a vehicle? 	response,	
9	Crash hazards	Deceleration, crumple zone	
	 What are the dangers caused by large decelerations? 		
	 How can the hazards of large decelerations be reduced? 		
	 How can you use momentum to calculate the forces involved in crashes? 		
8	Revision		
9	End of Unit Test		EUT
10	Test Feedback		Test feedback sheet

Conservation of energy

Opportu	nities for Breadth and Challenge: Using Newtons laws of motion effectively.		
Links to S	equencing for Learning: This unit links to previous work on P2 Energy yr7		
This unit	prepares pupils for work in Y10 CP7 Energy forces and doing work.		
Section	What we are learning (key knowledge)	Key words	Assessment
1	Energy stores and transfers	Chemical energy, Kinetic	Prior knowledge
	 How is energy transferred between different stores? 	Energy, Thermal Energy,	
	How can we represent energy transfers in diagrams?	Elastic Potential Energy,	
	 What happens to the total amount of energy when energy is transferred? 	Gravitational Potential	
		Energy, Atomic(Nuclear)	
		Energy, System, Law of	
		Conservation of Energy,	
		Joules, Sankey diagram	
2	Energy Efficiency	Dissipated, Lubrication,	
	What does efficiency mean?	Efficiency,	
	 How do we calculate the efficiency of an energy transfer? 		
	 How can we reduce unwanted energy transfers in machines? 		
3	Keeping Warm	Insulation, Conduction,	mum Sankey
	 What does thermal conductivity mean? 	Conductors, Thermal	diagrams
	 What affects the rate at which buildings cool? 	Insulators, Convection,	conservation of
	 How can insulation reduce unwanted energy transfers? 	Fluid, Radiation, Infrared	energy
		Radiation, Absorbed,	
		Emitted, Thermal	
		Conductivity	
4	Stored Energies		
	What factors affect the gravitational potential energy stored in an object?		
	How do you calculate gravitational potential energy?		
	How do you calculate the amount of kinetic energy stored in a moving object?		
5	Non-Renewable sources	Nuclear fuels, Uranium,	
	 What non-renewable energy resources can we use? 	Fossil fuels, Non-	
	 How are the different non-renewable resources used? 	renewables, Climate	
	 How is the use of non-renewable energy resources changing? 	change, Renewable	
6	Renewable resources	Solar cells, Solar Energy,	
	 What renewable energy resources can we use? 	Hydroelectricity, Wind	
	 How are the different renewable resources used? 	Turbine, Tidal Power, Bio-	
		Fuel, Carbon Neutral	

	 How is the use of renewable energy resources changing? 	
8	Revision	
9	End of Unit Test	EUT
10	Test Feedback	Test feedback sheet