Waves, Light and the Electromagnetic Spectrum

Opportur	nities for Breadth and Challenge:		
Links to S	equencing for Learning:		
This unit	links to previous work on		
This unit	prepares pupils for work in		1
Section	What we are learning (key knowledge)	Key words	Assessment
1	Describing Waves	Wavelength, Longitudinal,	Prior knowledge
	What do waves transfer?	Transverse, Amplitude,	
	How can we describe waves?	Velocity, Period,	
	• What is the difference between a longitudinal wave and a transverse wave?	Electromagnetic Waves.	
2a	Wave Speeds	Wave speed, Distance,	Retrieval Qs of
	 How can we calculate the speed (or velocity) of a wave? 	Frequency, Wavelength	keywords
	 How can we measure the speed of sound in air? 		
	 How can we measure the speed of waves on water 		
2b	Wave Investigation	Ripple Tank, Frequency,	MUM- Ripple Tank
	• Investigate the suitability of equipment to measure the speed, frequency and	Wave Speed,	investigation
	wavelength of a wave in a solid and a fluid.		
3a	Refraction	Refraction, Interface, Normal	
	 What happens when waves refract? 		
	When does refraction occur?		
	 How does a change in the speed of a wave affect its direction? 		
3b	Investigating refraction	Refraction, Ray diagrams,	
	 How can you use ray diagrams to show reflection and refraction? 	incident angle, refracted	
	• Investigate refraction in rectangular glass blocks in terms of the interaction of	angle	
	electromagnetic waves with matter.		
11a	Electromagnetic spectrum – Examples and Uses	Frequencies, wavelengths,	
	 What are some examples of electromagnetic waves? 	Transverse, Vacuum.	
	 What do all electromagnetic waves have in common? 		
	 Which electromagnetic waves can our eyes detect? 		
	What are the uses of each wave?		
11b	Electromagnetic spectrum – Hazards		Homework- Poster on
	 What are the dangers of electromagnetic radiation? 		the electromagnetic

	 How is the danger associated with an electromagnetic radiation? How is electromagnetic radiation linked to changes in atoms and their nuclei? 	spectrum, uses and dangers.
14	Revision End of Unit Test Test Feedback	Class assessment sheet EUT Test feedback sheet

Radioactivity

Opportun	ities for Breadth and Challenge:		
Links to S	equencing for Learning:		
This unit l	inks to previous work on		
This unit p	prepares pupils for work in		
Section	What we are learning (key knowledge)	Key words	Assessment
1	 Atomic Models What particles make up atoms? How big are atoms? How has our model of the atoms changed over time? 	atoms, elements, charge, sub atomic particles, electrons	Prior knowledge
2	 Inside Atoms What are the relative masses and charges of the particles that make up atoms? What are the isotopes of an element? How can isotopes be represented using symbols? 	Isotope, nucleons, relative mass, protons, electrons, mass number, atomic number	Retrieval Qs of keywords
3	 Electrons and Orbits How are electrons arranged in an atom? What happens to atoms when they absorb or emit electromagnetic radiation? How do atoms become ionised? 	Ionisation, spectrum, absorption spectrum, visible light, electronic configuration	
4	 Background radiation What is meant by background radiation? What are the sources of background radiation? How is radioactivity detected and measured? 	Count rate, dose, Geiger muller tube	
5	 Types of radiation What are alpha particles, beta particles and gamma radiation? How do the different kinds of radiation compare in their ability to penetrate materials? How do the different kinds of radiation compare in their ability to ionise atoms? 	Penetrate, alpha, beta, gamma,	
6	 Radioactive decay How does beta decay occur? How are atomic and mass numbers affected by different kinds of decay? How can radioactive decays be represented decays be represented in nuclear equations? 	Nuclear equation, beta, decay	
7	Half Life	Half life, becquerels, activity	
	 How does the activity of a substance change over time? 		

	 What does the half-life of a radioactive substance describe? How can the half-life be used to work out how much of a substance decays? 		
8	 Dangers of Radioactivity What are the dangers of ionising radiation? What precautions should be taken to protect people using radiation? What is the difference between contamination and irradiation effects? 	Contamination, Radiation, mutation	
9	Revison		
10	End of unit test		
11	Test review and feedback		

Energy- Forces Doing Work

Opportur	nities for Breadth and Challenge:		
Links to S	equencing for Learning:		
This unit l	links to previous work on		
This unit	prepares pupils for work in		
Section	What we are learning (key knowledge)	Key words	Assessment
1	Work and Power	Energy, Work done, Watts.	Prior knowledge
	How can energy of a system be changed?	Power, Joules, Newtons.	
	• What is work done and how can it be measured?		
	• What is power and how is it calculated?		
2	Objects affecting each other- Split into 3 lessons- Gravity, Magnetic and Static	Gravity, Gravitational fields,	Retrieval Qs of
	 What forces are there when two objects are touching? 	Static electricity, Magnets,	keywords
	 How can objects affect each other without touching? 	Magnetic fields, action-	
	 How are pairs of forces represented? 	reaction forces.	
3	Vector Diagrams HIGHER	Resultant force, Free body	Drawing a vector
	What is a free body diagram?	diagram. Scale diagram.	diagram.
	How and why do we resolve force?		
	• How do all the forces on a single body combine to affect it?		
4	Revison		
5	End of unit test		
6	Test review and feedback		