Waves, Light and the Electromagnetic Spectrum

Opportunities for Breadth and Challenge: Snell's Law, discovery of IR and UV (disciplinary), ultrasound in jewellery cleaning & cracks in metal detection			
Links to Sequencing for Learning:			
This unit li	nks to previous work on light and sound in Y7		
This unit p	repares pupils for work in radioactivity (gamma) in topic 6 (radioactivity) and topic TS (astronomy)		
Section	What we are learning (key knowledge)	Key words	Assessment
1	Describing Waves	Wavelength, Longitudinal,	Retrieval Qs of
	What do waves transfer?	Transverse, Amplitude,	keywords
	How can we describe waves?	Velocity, Period,	
	 What is the difference between a longitudinal wave and a transverse wave? 	Electromagnetic Waves.	
2a	Wave Speeds	Wave speed, Distance,	Use of $v = f\lambda$ and $d = vt$
	 How can we calculate the speed (or velocity) of a wave? 	Frequency, Wavelength	
	 How can we measure the speed of sound in air? 		
	How can we measure the speed of waves on water?		
2b	Wave Investigations	Ripple Tank, Frequency,	MUM- Ripple Tank
		Wave Speed	investigation, wave
	Core practical: Investigate the suitability of equipment to measure the speed, frequency and		speed in vibrating
	wavelength of a wave in a solid and a fluid.		string, wave speed in
			steel/air with
30	Pefraction	Pefraction Interface	Defraction in water
30	• What happens when waves refract?	Normal Absorption	demo Application of
	What happens when waves refract: What happens when waves refract:	Transmission Reflection	soldier/car model for
	When does reflaction occur:	Density. Speed	towards/away from
	• How does a change in the speed of a wave affect its direction?		normal with light.
	Core practical: investigate refraction in rectangular blocks		, i i i i i i i i i i i i i i i i i i i
3h	Investigating refraction	Refraction Ray diagrams	Accuracy of angle
50	How can you use ray diagrams to show reflection and refraction?	incident angle, refracted	measurements
	 Investigate refraction in rectangular glass blocks in terms of the interaction of 	angle	
	electromagnetic waves with matter.		
4 TS only	Human hearing range and how the ear works	Ultrasound, infrasound,	Questioning
,	 State the frequency associated with ultrasound and infrasound 	cochlea, eardrum, frequency	Ŭ
	Explain how the human ear works		

5 TS only 6 TS only	 Uses of ultrasound Describe how sonar is used to detect a shoal of fish Describe how ultrasound scanning is used in pregnancy Describe how bats use ultrasound Calculate depth or distance from wave speed and velocity Infrasound & Seismic Waves 	Boundary, density, partial reflection P waves, s waves, transverse,	Use of d = vt including 'halving'/'doubling' Analysis of time-pulse graphs for (e.g.) metal scanning
	 State some animals that use infrasound for communication Explain what p and s waves tell us about the internal structure of the Earth 	longitudinal, seismograph, seismometer, mantle, crust, outer core, inner core	
7 TS only	Revision for unit 4 End of Unit Test 4 Test 4 Feedback		Class assessment sheet booklet EUT Test feedback sheet
8 TS only	 Total Internal Reflection Use words and diagrams to state the law of reflection State and draw what is meant by the 'critical angle' Describe what total internal reflection is and how it is used in communications and endoscopes 	TIR, critical angle, endoscope, fibre optics / optical fibre	Accurate drawing of angles in L of R Qs or endoscope
9 TS only	 Colour Explain the difference between specular and diffuse reflection Explain how light absorption at surfaces causes us to see different colours Explain how filters affect what colours we see 	Specular, diffuse, filter, absorbed, reflected	
10 TS only	 Lenses Use ray diagrams to show how light is refracted in converging and diverging lenses Explain the difference between real and virtual images 	Converge, diverge, real, virtual	Ray diagrams
11a	 Electromagnetic spectrum – Examples and Uses List the waves in the electromagnetic spectrum in order of increasing frequency (decreasing wavelength) What do all electromagnetic waves have in common? Which electromagnetic waves can our eyes detect? What are the uses of each wave? 	Frequencies, wavelengths, Transverse, Vacuum.	Mnemonic
11b	 Electromagnetic spectrum – Hazards What are the dangers of electromagnetic radiation? How is the danger associated with an electromagnetic radiation? How is electromagnetic radiation linked to changes in atoms and their nuclei? 	lonizing, gamma	Homework- Poster on the electromagnetic spectrum, uses and dangers.
12 TS only	 Temperature and emitted radiation Explain the link between emitted radiation, absorbed radiation and the temperature of an object 	Emit, absorb, power, rate, greenhouse effect	

	Apply this concept to the Earth		
	Core practical – investigate how the surface of a body effects thermal energy radiated or absorbed (black and silver cans / Leslie's cube)		
13 TS	Generation of radio waves	Aerial, oscillation	
only	 Recall that radio waves can be produced by oscillations in electrical circuits 		
	 Compare this with radiation produced by changes in atoms or nuclei (partially covered 		
	later in radioactivity topic)		
14	Revision for unit 5		Class assessment sheet
	End of Unit Test 5		booklet
	Test 5 Feedback		EUT
			Test feedback sheet

Lacon Childe School Science Department – Physics Scheme of Work – Year 10 TS - Topic 6

Radioactivity

Opportun	Opportunities for Breadth and Challenge: Half-life modelling simulation			
Links to Se	quencing for Learning: Multiple links to chemistry regarding atomic structure			
This unit li	nks to previous work on gamma radiation as paper of the electromagnetic spectrum			
This unit p	repares pupils for work in electric circuits (limited as fairly self-contained unit)			
Section	What we are learning (key knowledge)	Key words	Assessment	
1	Atomic Models	atoms, elements, charge, sub	Prior knowledge	
	What particles make up atoms?	atomic particles, electrons		
	How big are atoms?			
	 How has our model of the atom changed over time? 			
2	Inside Atoms	Isotope, nucleons, relative	Retrieval Qs of	
	 What are the relative masses and charges of the particles that make up atoms? 	mass, protons, electrons,	keywords	
	 What are the isotopes of an element? 	mass number, atomic		
	 How can isotopes be represented using symbols? 	number		
3	Electrons and Orbits	Ionisation, spectrum,		
	How are electrons arranged in an atom?	absorption spectrum, visible		
	 What happens to atoms when they absorb or emit electromagnetic radiation? 	light, electronic configuration		
	How do atoms become ionised?			

4	Background radiation	Count rate, dose, Geiger	
	 What is meant by background radiation? 	muller tube	
	 What are the sources of background radiation? 		
	How is radioactivity detected and measured?		
5	Types of radiation	Penetrate, alpha, beta,	
	 What are alpha particles, beta particles and gamma radiation? 	gamma,	
	• How do the different kinds of radiation compare in their ability to penetrate materials?		
	• How do the different kinds of radiation compare in their ability to ionise atoms?		
6	Radioactive decay	Nuclear equation, beta,	
	How does beta decay occur?	decay	
	How are atomic and mass numbers affected by different kinds of decay?		
	• How can radioactive decays be represented decays be represented in nuclear equations?		
7	Half Life	Half life, becquerels, activity	
	 How does the activity of a substance change over time? 		
	 What does the half-life of a radioactive substance describe? 		
	 How can the half-life be used to work out how much of a substance decays? 		
8	Dangers of radioactivity	Contamination, iradiation,	
	 What are the dangers of ionising radiation? 	mutation	
	 What precautions should be taken to protect people using radiation? 		
	 What is the difference between contamination and irradiation effects? 		
	NB plus link to half life for TS		
9 TS only	Uses of radioactivity	PET scan, radiotherapy	
	 household fire (smoke) alarms 		
	irradiating food		
	sterilisation of equipment		
	 tracing and gauging thicknesses 		
	diagnosis and treatment of cancer (including PET scanners and tracers)		
10 TS	Fission and nuclear power stations	Chain reaction, moderator,	Exam Qs
only	Describe the process of nuclear fission and chain reactions	control rods	
	• Explain how these are utilised in nuclear power stations, including the use of control rods		
11.70	and moderators and a description of the energy transfers involved in the process		
11 IS	Nuclear fusion	Chain reaction, moderator,	
oniy	Describe nuclear fusion as the creation of larger nuclei resulting in a loss of mass from	control roas	
	smaller nuclei, accompanied by a release of energy, and recognise fusion as the energy		
	Source for stars		
	Explain the difference between nuclear fusion and nuclear fission		

	 Explain why nuclear fusion does not happen at low temperatures and pressures, due to electrostatic repulsion of protons 	
12	Revision End of unit test Test review and feedback	

Lacon Childe School Science Department – Physics Scheme of Work – Year 10 TS - Topic 7

Astronomy (TS only)

Opportunities for Breadth and Challenge: Many opportunities for metaphysical discussion of ideas such as parallel universes, oscillating universe etc			
Links to Se	equencing for Learning:		
This unit li	nks to previous work on Space in Y8		
This unit p	repares pupils for work in NA (self-contained unit)		
Section	What we are learning (key knowledge)	Key words	Assessment
1 TS only	Solar System	Geocentric, heliocentric,	
	• Recall that our Solar System consists of the Sun (our star), eight planets and their natural	Ptolemy, Copernicus	
	satellites (such as our Moon); dwarf planets; asteroids and comets		
	 Name the planets in order of distance from the sun 		
	Describe how these ideas have changed over time		
2 TS only	Mass & Weight	Gravitational field strength	
	 Describe the difference between mass and weight 		
	State units for each		
	 Use W=mg to calculate weight, mass or GFS 		
3 TS only	Orbits and circular motion		
	 Describe the orbits of moons, planets, comets and artificial satellites 		
	• Explain for circular orbits how the force of gravity can lead to changing velocity of a planet		
	but unchanged speed		
	• Explain how, for a stable orbit, the radius must change if orbital speed changes (qualitative		
	only)		
4 TS only	Doppler Effect and Redshift		

r	
	Describe that if a wave source is moving relative to an observer there will be a change in
	the observed frequency and wavelength
	 Describe the red-shift in light received from galaxies at different distances away from the
	Earth
	Explain why the red-shift of galaxies provides evidence for the Universe expanding
5 TS only	Theories of the Universe
	Compare the Steady State and Big Bang theories
	Describe evidence supporting the Big Bang theory, limited to red-shift and the cosmic
	microwave background (CMB) radiation
	Explain how the discovery of the CMB radiation led to the Big Bang theory becoming the
	currently accepted model
6 TS only	Life Cycle of Stars
	 Describe the evolution of stars of similar mass to the Sun through the following stages: a
	nebula b star (main sequence) c red giant d white dwarf
	Explain how the balance between thermal expansion and gravity affects the life cycle of
	stars
	Describe the evolution of stars with a mass larger than the Sun
7 TS only	Telescopes
	Describe how methods of observing the Universe have changed over time including why
	some telescopes are located outside the Earth's atmosphere
8 TS only	Revision
	End of unit test
	Test review and feedback

Lacon Childe School Science Department – Physics Scheme of Work – Year 10 TS - Topic 8 and 9

Energy, Forces Doing Work & Forces and their Effects

Opportunities for Breadth and Challenge:

Links to Sequencing for Learning: This unit links to previous work on

This unit prepares pupils for work in

Section	What we are learning (key knowledge)	Key words	Assessment
1	 Energy Stores & Transfers Describe typical energy transfers in terms of energy stores 	Kinetic, gravitational potential, elastic potential, chemical potential, electrical, thermal, light	
2	Work doneE = Fd	Work done = energy transferred, joules	
3	 Gravitational Potential Energy Use and application of ΔGPE = m× g ×Δh 		
4	 Kinetic Energy Use and application of KE = × m × v² 		
5	 Conservation of Energy & Efficiency State and use the principle of energy conservation Describe energy losses from mechanical processes in terms of dissipation and heat Use Efficiency = useful energy / total energy Explain ways of reducing unwanted energy transfer through lubrication 	Closed system	
6	 Power revision and investigation Use of P = E/t (recap from earlier unit) Investigate power by moving up the stairs, step-ups onto a low platform or lifting objects of different weights 	1W = 1J/s	
7	 Types of Force & (Simple) Force Diagrams Describe examples of forces that act 'at a distance', when objects are 'in contact' Describe examples of forces that act when objects are 'in contact' Describe forces that act in pairs (Newton's third law) 	Vector, scalar, gravitational, electrostatic, magnetic, normal contact, friction	
8	 Free Body and Vector Diagrams Draw and use free body force diagrams Use vector diagrams to illustrate resolution of forces, a net force, and equilibrium situations State the effect of a zero and non-zero resultant on an object's motion 	Balanced, accelerate, constant speed/velocity	
9 TS only	 Rotational Forces and Moments Describe situations where forces can cause rotation Calculate moments using force (newton, N) × distance normal to the direction of the force (metre, m) Use the principle of moments (the sum of clockwise moments = the sum of anti-clockwise moments) 	Equilibrium, pivot/fulcrum, lever, gear	

	 Explain how levers and gears transmit the rotational effects of forces 	
10	Revision	
	End of unit test	
	Test review and feedback	